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One tool in the search of new approximation schemes and computational
algorithms for functions of several variables is the study of their represen-
tability in terms of prescribed superpositions of functions of fewer variables
[21, 36]. We shall outline in this paper some ideas which originated with
Hilbert, but were carried far beyond their original purpose by Kolmogorov
and his school.

The history of these ideas is sketched in Section 1; some of the main
results in the area of superpositions are outlined in Sections 2 and 3; Section 4
describes unsolved problems. The reader is also referred to the excellent
papers of Arnol’d [4], Lorentz [22], Vituskin [39], and Vitu¥kin—Henkin {40].

1. HiLBERT’S PROBLEM

The idea of representing functions of » variables as superpositions of
functions of m << n variables for the purpose of studying the structure
of function classes is due to Hilbert. He first drew attention to this circle of
ideas in the thirteenth of his celebrated twenty three problems [15], and
again twenty seven years later [16]. The thirteenth problem reads, in part, as
follows: “... Likewise the general (polynomial) equations of the 5th and 6th
degrees are solvable by suitable nomographic tables; for, by means of
Tschirnhausen transformations, which require only extraction of roots,
they can be reduced to a form where the coefficients depend upon two
parameters only.

“Now it is probable that the root of the (polynomial) equation of the
seventh degree is a function of its coefficients which does not belong to this
class of functions capable of nomographic construction, i.e., that it cannot

be constructed by a finite number of superpositions of functions of two
123
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arguments. In order to prove this, the proof would be necessary that the
equation of the seventh degree

T+ 4P+ +1=0 ¢y

is not solvable with the help of any continuous functions of only two variables.
I may be allowed to add that I have satisfied myself by a rigorous process
that there exist analytic functions of three variables x, y, and z which cannot
be obtained by a finite chain of [analytic] functions of only two arguments.”

We note that this conjecture is algebraic in origin. It emerged out of the
attempts to eliminate, by algebraic means, the largest possible number of
coefficients from polynomial equations Y';_, a,x* = 0, thereby expressing
their roots, regarded as functions of n 4 1 coefficients, as functions of fewer
coeflicients [41]. Hilbert recognized the applicability of this idea to the more
general problem alluded to above. While the conjecture itself was proved by
Kolmogorov [19, 20] and Arnol’d [1] to be false, the fact must not be
overlooked that the problem to which Hilbert addressed himself remains
unsolved. Namely, it is not known if Eq. (1) is solvable by finitely many
superpositions of algebraic functions of two variables. The word “analytic”
which appears in brackets in the above quotation is missing in Hilbert’s
formulation, but there is no doubt that this was just an oversight on his
part; it was known to him that every function of three variables is a super-
position of finitely many functions of two variables [27]. Let us, in fact,
outline a proof of the following fact:

THEOREM 1.1.  There is an analytic function of three variables which is not
a finite superposition of analytic functions of two variables.

Proof: For each integer N > 1 we define iteratively a superposition of
order N of analytic functions of two variables by means of the following
scheme:

QN = QN(Plls p21)9
1 1 52 2 — .
it = i (Poir s )y K= 1.2, pi* are analytic functions of 2
Pt = p2(Pou—y1 > Do), k =1,2,3,4 | variables; in particular, p,V are
: analytic functions of at most two

pi = pioity . piY, k= 1,2,.,2,| of the variables x, y, z.

PN — N (x, v, 2), k=1,2,.,2%N

A simple count shows that Q¥, with the indicated insertions, is a super-
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position of 2§+ — 1 (nontrivial) analytic functions; we call O a superposition
of order N. Thus, a superposition of order 3 is

3 = Q¥ p[p2(p:3, po°), P(DSP, P, P D (D5, Pe®)s PP P}
The following facts are easy to verify:

(a) If &N stands for the set of superpositions of order N, then
SLC F2C F3C -,

(b) There are only finitely many distinct superpositions of order N
for each N. These are obtained by looking at the permutations of the space-
variables x, y, and z in a fixed superposition of order N.

(c) For any finite superposition 7T of analytic functions of two variables
there is a smallest integer N such that T is of order N.

The proof of the theorem is based on the following observation: Let
T be an arbitrary superposition of order N of analytic functions of two
variables, and look at all terms in T, after an appropriate manipulation, of
degree < m in each variable x, y, and z. The total number of independent
coefficients corresponding to these terms does not exceed N - m2. On the
other hand, in the expression

@

Y x Pz )

i,4,k=1

in which «;, B;, and y; vary independently over the set of nonnegative
integers, there are m3 distinct terms of degree << min x, y, and z. The number
of possible independent coefficients is therefore also m?®.

Now let N be fixed and suppose T equals the series (2). If m > N, then
m3 > N - m?, and it follows that the coefficients a;; > 0 of terms of degree
< m in x, y, and z must satisfy algebraic relations which depend on the
particular superposition 7. It is clear that coefficients a;;; can be so selected
that they do not satisfy any such algebraic relation, since there are only
finitely many superpositions of order <{ N. Moreover, this can be done in
such a way that coefficients a,; will decrease in a prescribed manner with
increasing i, j, and k.

An inductive procedure can be developed for selecting coefficients a;;;
so that none of the required algebraic relations associated with superpositions
of order 1, 2, 3 --- is satisfied, and so that (2) will represent an analytic
function.
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2. KoLMOGOROV’S THEOREM

Designating now by E” the n-fold cartesion product E X E X - X E
of the unit intervals £ = [0, 1], we let ¥(E™) stand for the Banach space of
real valued continuous functions defined on E», with the uniform norm.

In 1956 Kolmogorov obtained the very unexpected result that every
function fe ¥(E™), n > 4, is a finite superposition of continuous functions
of only 3 variables [19]. Specifically, he showed that each fe %(E™) can
be represented as

f(xl sreey xn) = 21 hr[xn ’ glr(xl [ xn—l)a gzr(xl » Xg 5eees xn—l)]a (3)
where A" € €(E?) and g;" € €(E™!). The above statement follows when this
formula is applied repeatedly to the inner functions g,”. In this theorem,
(gy", g57) represents a point in the universal tree (which can be realized as a
continuum in E%). Consequently, the domain of the functions A" is the
cartesian product of a tree and the interval E. The proof of this theorem is
rather difficult. It was followed in 1957 by a theorem of Arnol’d [1] that
every f € €(E®) can be represented in the form

3
F(xy, X3, x5) = 'Zx hiil@ii(xs 5 X2), X3, )
2,1=
where the 4;; and ¢,; are continuous functions of two variables. This theorem
disproved the conjecture in Hilbert’s thirteenth problem. A detailed proof
of this theorem can be found in [2] (see also [3] in this connection).
Analyzing the constructions in [1] and [19], Kolmogorov realized that
the use of trees could be avoided and a much stronger result proved. It is
the following remarkable superposition theorem [20]:

THEOREM 2.1. For each integer n > 2 there exist monotonic increasing
Sfunctions 7% € €(E) with the property that every function f€ €(E®) has a
representation

f(xq ey Xp) = 2}21 8% (i z/ﬂ’k(x,,)), O]

=1
where also the functions g, are continuous.

Kolmogorov based this theorem on three lemmas which he stated without
proof. Proofs of these, as well as alternative proofs of the theorem, were
subsequently given by the author [28], Kim [18], Lorentz [22, 23], Tihomirov
[32], and others.
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It was first observed by Lorentz [22] that the functions g; can be replaced
by a single function g. The author has shown that the theorem can be proved
with constant multiples of a single function ¢ and translations [28]. Specifically,
for each integer » > 2 there is a monotonic increasing function ¢y € ¥(E) and
constants € >0 and A > 0 with the property that each fe %(E") has a
representation of the form

Fer sy Xp) = :Z:_ g[i Ap¢(xp + ek) + k] (6)

p=1

Instead of powers of a single constant A, one can use constants A, , A, ,..., A,
which are linearly independent over the field of rationals. This follows at once
from the constructions in [28]. We have also shown that the fixed inner
functions must depend on k in a nontrivial way[29]. Specifically, let ¢, € €(E),
1 << p < n, be artibrary functions, and let N be a positive integer. Then for
any polynomial v(x, ,..., X,),

N n
xiv"”l 4+ v(Xy ...y Xp) F Z g [ 2 Wptfip(X5) + Bk]’ 0

p=1

where g is continuous, and a,; and 8, are arbitrary constants.

The most significant improvement in Kolmogorov’s theorem, however,
is due to Fridman [9]. He succeeded in showing that the functions #?* in (5)
can be constructed to belong to class Lip(1).! Using Fridman’s construction
we were able to show that also the single function 4 in (6) can be taken to
belong to the class Lip(l) [31]. Earlier efforts have shown that the
functions ¢?* obtained by variations of Kolmogorov’s construction can
belong to classes Lip(a) for 0 < o < 1, excluding only (and specifically)
the case o = 1 [10, 22, 28]). Fridman’s construction differs from that of
Kolmogorov in an essential way, and his result was rather surprising. It is
to be hoped that this improvement will make Kolmogorov’s theorem more
accessible to applications. It may also admit the use of distributions in
further investigations of this theorem. For example, we used this technique
in [29] to prove the assertion (7).

3. SUPERPOSITIONS WITH SMOOTH FUNCTIONS

It is an elementary observation that smooth functions can be composed
of nonsmooth ones, but nonsmooth functions cannot, in general, be composed
of smooth ones. Because the space-variables x, ,..., x,, are independent, it

1 J(¢) belongs to class Lip(x), 0 << « < 1, if there is a constant A such that | ¥(t,) —y(t)| <
A | t; — t3]= for all points ¢, and 7, in its domain.
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was expected that the possible nonsmoothness of members of €(E™) is
related to n: the larger n, the less smooth are the worst members of G(E™).
Hilbert thought to exploit this idea by using the smallest number of variables
in the representations of a continuous function in terms of superpositions
as a classification index [16]. Kolmogorov’s theorem 2.1 shows that all
continuous functions have index y = 1, and hence the idea of using the
number of variables as a classification index has failed. Vituskin has
discovered, however, that if instead of €(E") we consider ¥‘®(E"), the
space of functions of n variables all of whose partial derivatives of orders
< p exist and are continuous, then the index y = n/p works (p = 1) [33].
This is one of the deepest results in the area of superpositions, and it can be
stated as follows:

THEOREM 3.1. Not all functions of index x = n/p can be realized as a
superposition of functions of index y, = (ny/py) < x.

Vituskin’s proof uses the concept of multidimensional variation developed
by him. Another proof, using e-capacity, is contained in a paper of
Kolmogorov and Tihomirov [21]. The theorem demonstrates the inevitable
decrease in smoothness in representations by superpositions as the number
of variables decreases.

We now list some special results involving superpositions with smooth
functions. The first was proved by Ostrowski [26]:

THEOREM 3.2. The analytic function

€K
{x, y) = Y xMkv
k=1
is not a finite superposition of infinitely differentiable functions of one variable,
and algebraic functions of any number of variables.

Closely related to Kolmogorov’s theorem is the following result of
Vituskin [37, 38]:

THEOREM 3.3. Let oqu(xy, Xp), 1 <<k <X N, be arbitrary functions of
C(E?), and let i (x,, x2), 1 < k < N, be continuously differentiable. Then
there is an analytic' function of two variables which is not representable in
the form

N
Z orlXy 5 X3) - gk[‘ﬁk(xl s Xg)] )]

k=1

with continuous functions g .
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Extending this result, Henkin [10] has shown that the set of superpositions
(8) is closed and nowhere dense in ¥(E?). At the same time, he constructed
a polynomial (x; + vx,)* which cannot be written in the form (8).

While the proofs of Vituskin and Henkin can be generalized to encompass
the superpositions

N
z (pk(xl EXRLE] xn) gk[l//k(xl yeeey xn)]9
k=1
they do not seem to apply to superpositions
N
z (Pk(xl PAREE] xn) gk[¢k1(x1 geeey xn),"" ‘/’km(—xl 3erey xn)L (9)
k=1

where 1 < m < m, the functions ¢, are continuous, and the functions ¥;;
are continuously differentiable. We thus have the following

3.4. Problem

Is there an analytic function of n >> 3 variables which cannot be represented
as a superposition of the form (9) with continuous functions ¢, and g,
and with continuously differentiable functions i; ?

We close this section with two conjectures of Kolmogorov.?

3.5. Conjectures

There exist analytic functions of three variables which are not representable
as finite superpositions of continuously differentiable functions of two
variables; there exist analytic functions of two variables which are not re-
presentable as finite superpositions of continuously differentiable functions
of one variable.

A proof of a special case of the second conjecture is contained in Vituskin’s
proof of theorem 3.3. It should be noted that, for n = 3, Problem 3.4 is a
special case of the first conjecture in 3.5.

4. PROBLEMS

In the last section we stated a problem and two conjectures dealing with
more general superpositions. Returning to the basic form in which
Kolmogorov’s theorem is stated, we consider here problems connected with
superpositions of the form

Z g[¢k(x1 EREES] xn)]' (10)
k=1

2 Communicated privately to the author.
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4.1. Uniqueness

Are there functions € G(E"), k = 1,2,..., N, with the property that
each function f € €(E™) has a unique representation of the form (10)? Clearly,
this is equivalent to asking if zero has a unique representation in the form
(10). An affirmative answer to this question would give, as a corollary, a new
proof for the affirmative answer to the following problem of Banach [6]:

Are the spaces €(E™) and ¥(E) isomorphic (linearly homeomorphic)?
The solution of this problem is contained in a paper of Miljutin [24] published
in 1966. The result, however, is already contained in his doctoral dissertation
of 1952.

This line of investigation goes far beyond the study of superpositions.
We mention here one result of Henkin [11] which complements the result
of Miljutin:

Let €®(E") stand for the Banach space of continuous functions defined
on E" and having continuous partial derivatives of orders <{s, the norm
being the usual one. If p >0, s > 1, and » > 2, then there is no linear
homeomorphism between the spaces €9(E™) and ¥?(E).

Other results along these lines can be found in the work of Henkin [12-14},
Kadec [17], and others.

4.2. Convergence

Given continuous functions g;(t), ¥ix; ,..., X,) such that the uniform
limit

lji_{g ,czlgkj[¢kj(XI seees Xp)] = (X1 500y X3) (11)

exists, there is no guarantee that this limit is of the form (10). The problem,
then, is to find necessary and sufficient conditions characterizing the class of
sequences whose uniform limit (11) exists and is of the form (10). To make
this problem meaningful, some restrictions, must be imposed on the functions
P -

Even when N = 1, the answer is not known, a case in point being the
uniform limit 0 < x<land 0 <y <)

xy = %1_)12 exp[ln (x + %) + ]n(y + %)]

The functions g,(t) = exp(?) and ¢;(t) = In(z 4 1/) are strictly monotonic,
and f(x, y) = xy is strictly monotonic in each variable, except when x = 0
or y = 0. Yet, the limit of the sequence g;[¢Ax) + @;(»)] is not of the form
gle() + $0)1 [5, 301

A partial answer to the question of convergence of sequences of the form
gilpi(x) + ¢;(¥)] was given by Vainstein and Kraines [33], who showed that
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the limit is of the form g[p(x) 4+ $(»)] if it is strictly monotonic in each
variable. According to our note [30], this condition is not necessary.

4.3. Minimal Number of Summands

Bassalygo [7] has shown that given any functions s, € €(E?), k = 1, 2, 3,
there is a function f € €(E?) not representable in the form ZLI Guldn(xy  x9)]
Returning now to the specific representation in Kolmogorov’s theorem 2.1,
it is not known if 2n + 1 is the smallest number of summands when n > 2.

The case n = 2 has been settled by Doss [8] who has shown that formula
(5) with 2n + 1 replaced by 2» is not true for all functions f € ¥(E?) when
the functions ?? are monotonic.

It is interesting to note that the argument of Doss depends only on the
fact that each function '%(x,) + ¢®*(x,), by virtue of the stipulated mono-
tonicity, has level sets which intersect given level sets of the remaining
functions in a prescribed manner. This fact, however, plays no explicit role
in Kolmogorov’s proof of theorem 2.1. Although Doss’s construction
becomes complicated already for four summands, it might be interesting to
discover why the argument breaks down when five summands are used. In
fact, we know from Vituskin’s Theorem 3.3. that Doss’s argument would
not break down even with more than five summands when the functions %*
are assumed to be continuously differentiable.

4.4. Characterization of the Function i,

Disregarding the particular form of the right hand side of (5), Kolmogorov’s
Theorem 2.1 can be stated as follows:

THEOREM. A. Let {S};,...,Si} k=1,2,.,2n+1, i=1,2,3,., be
Jfamilies of closed n-cubes with the following properties:
(@) Sk NSk = ¢, whenever r + g;
(b) diameter (SE)—>0 as i — oo;
(c) for each value of i, every point of E" belongs to at least n + 1
n-cubes SY, .

B. Let e €(E”), k = 1,2,..,2n + 1, be functions endowed with the
property that $,(SE) N $(SE) = ¢ whenever r 5 q, for all i and k, (S},
designating the image of S%, under i, .

Then each function f € G(E™) can be represented in the form

2n+1

f(xl EXERT] xn) = Z gk[l)bk(xl gecey xn)]’ (12)
k=1
where the functions g, are continuous.

640/6/2-2
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In the various proofs of Kolmogorov’s theorem, the functions i, are
always defined by their separation of cubes as in the formulation above.
It would be desirable to have a direct (analytical) characterization of those
functions ; which admit a Kolmogorov type theorem.

From the above formulation of the theorem it is quite apparent that each
function i, is one-to-one on a large subset of E». In fact, the following
can be deduced:

C. There are subsets A, of E™ with the properties

(d) for each k, i, is one-to-one on Ay ;

(e) each point of E™ belongs to at least n + 1 sets A, . We now pose the
following specific questions:

(i) Does the conclusion of the above theorem hold if condition A
and B are replaced by C?

(ii) Is condition C necessary for a Kolmogorov type theorem ?

REFERENCES

1, V. 1. ARNOLD’D, On functions of three variables, Dokl. Akad. Nauk SSSR 114 (1957),
679-681. MR 22, #2668. Amer. Math. Soc. Transl. 28 (1963), 51-54.

2. V. 1. ARNOLD’D, On the representation of continuous functions of three variables by
superpositions of continuous functions of two variables. Mat. Sb. (N.S.) 48 (1959),
3-74 (Russian). MR 22, #12191. Amer. Math. Soc. Transl. 28 (1963), 61-147,

3. V.1 ArRNOLD’D, Letter to the editor (Russian). Mat. Sb. (N.S.) 98 (1962), 392. MR 25,
#1251.

4. V.1 ARNOLD’D, Some questions on approximation and representation of functions
(Russian), in “Proceedings of the International Congress of Mathematics” 1958,
pp. 339-348, “Cambridge University Press,” New York, 1960. MR 21, #12192.
Amer. Math. Soc. Transl. 53 (1966), 192-201.

5. V. 1. ArNOLD’D, On the representability of functions of two variables in the form
xlep(x) + ¥(x)] (Russian). Uspehi Mat. Nauk. (N.S.) 12 (1957), 119-121. MR 19,
#841.

6. S. BanacH, “Théorie des Opérations Linéaires,” p. 185, Monogr. Mat. Tom 1,
Warsaw, 1932; Chelsea, New York, 1955. MR 17, 175.

7. L. A. BassaLYGo, On the representation of continuous functions of two variables by
means of continuous functions of one variable (Russian with English Summary).
Vestnik Moskov. Univ. Ser. I Mat. Meh. 21 (1966), 58-63. MR 32, #7684.

8. R. Doss, On the representation of continuous functions of two variables by means
of addition and continuous functions of one variable, Collog. Math. 10 (1963), 249-259.
MR 27, #5882.

9. B. L. FRiDMAN, Improvement in the smoothness of functions in the Kolmogorov
superposition theorem (Russian), Dokl. Akad. Nauk, SSSR 177 (1967), 1019-1022.
MR 38, #663. Soviet Math. Dokl. 8 (1967), 1550-1553.

10. G. M. HEeNKIN, Linear superpositions of continuously differentiable functions (Russian),
Dokl. Akad. Nauk. SSSR 157 (1964), 288-290. MR 29, #3596.



1

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

A SURVEY OF SOLVED AND UNSOLVED PROBLEMS 133

. G. M. HenkIN, Proof of nonisomorphism of spaces of smooth functions on a segment
and on a square, Sovier Math. Dokl. 8 (1967), 46-50.

G. M. HenkIN, Imbedding the space of s-smooth functions of n variables into a space
of sufficiently smooth functions of fewer variables, Soviet Math. Dokl. 4 (1963),
1633-1636.

G. M. Henxin, The nonisomorphy of certain spaces of functions of different numbers
of variables, Functional Anal. Appl. 1 (1967), 306-315.

G. M. HenkIN, The lack of a uniform homeomorphism between the spaces of smooth
functions of one and of » variables (n > 2) (Russian), Mat. Sh. (N.S.) 74 (1967),
595-607.

D. Hieert, Mathematical problems, Bull. Amer. Math. Soc. 8 (1902), 461-462.
D. Husert, Uber die Gleichung neunten Grades, Math. Ann. 97 (1927), 243-
250.

M. 1. KabEc, A proof of the topological equivalence of all separable infinite dimen-
sional Banach spaces, Funkcional. Anal. i PriloZen, 1 (1967), 61--70.

J. S. KM, Master’s Thesis, University of Maryland, 1960.

A. N. KoLMoGOROV, On the representation of continuous functions of several variables
by superpositions of continuous functions of a smaller number of variables, Amer.
Math. Soc. Transl. 17 (1961), 369-373.

A. N. KoLMOoGOROV, On the representation of continuous functions of several variables
by superposition of continuous functions of one variable and addition, Amer. Math.
Soc. Transl. 28 (1963), 55-59.

A. N. KoLMOGOROV AND V. M. TIHOMIROV, e-entropy and e-capacity of sets in func-
tional spaces, Amer. Math. Soc. Transl, Ser. 2 17 (1961), 277-364.

G. G. Lorentz, Metric entropy, widths, and superpositions of functions, Amer.
Math, Monthly 69 (1962), 469-485.

G. G. Lorentz, “Approximation of functions,” Holt, Rinehardt and Winston, New
York, 1966.

A. A. MILUTIN, Isomorphism of the spaces of continuous functions over compact
sets of the cardinality of the continuum, Theor. Funkcii Funkcional. Anal. i PriloZen.
2 (1966), 150-156.

P. A. OsTRAND, Dimension of metric spaces and Hilbert’s problem 13, Bull. Amer.
Math. Soc. 71 (1965), 619-622,

A. Ostrowskl, Uber Dirichletsche Reihen und algebraische Differentialgleichungen,
Math. Z. 8 (1920), 241-298.

D. A. SPReECHER, A representation theorem for continuous functions of several
variables, Proc. Amer. Math. Soc. 16 (1965), 200-203.

D. A. SPRECHER, On the structure of continuous functions of several variables, Trans.
Amer. Math. Soc. 115 (1965), 340-355.

D. A. SPRECHER, On the structure of representations of continuous functions of several
variables as finite sums of continuous functions of one variable, Proc. Amer. Math.
Soc. 17 (1966), 98-105.

D. A. SPRECHER, On similarity in functions of several variables, Amer. Math. Monthly
76 (1969), 627-632.

D. A. SPRECHER, An improvement in the superposition theorem of Kolmogorov,
J. Math. Anal. Appl. 38 (1972), 208-213.

V. M. THoMrov, A. N. Kolmogorov’s work on e-entropy of functional classes and
superpositions of functions, Uspehi Mat. Nauk. 18 (1963), 55-92.

I. A. VAINSTEIN AND M. A. KREINES, Sequences of functions of the form f[X(x) + Y(»)],
Uspehi Mat. Nauk. 15 (1960), 123-128.



134 SPRECHER

34

3s.

36.

37.

38.

39.

40.

41.

. A. G. VITu$kiN, On Hilbert’s thirteenth problem, Dokl. Akad. Nauk. SSSR 95 (1954),
701-704.

A. G. VIruskiN, “On Multidimensional Variations” (Russian), Gosudarstr. Izdat.
Tehn.-Teor. Lit.,, Moscow, 1955.

A. G. Virudkin, “Theory of the Transmission and Processing of Information,”
Pergamon Press, New York, 1961.

A. G. VITuskiIN, Some properties of linear superpositions of smooth functions, Soviet
Math. Dokl. 5 (1964), 741-744.

A. G. Vituskin, Proof of the existence of analytic functions of several variables not
representable by linear superpositions of continuously differentiable functions of
fewer variables, Soviet Math. Dokl. § (1964), 793~796.

A. G. VITuskiN, Representability of functions by superposition of functions of a
smaller number of variables (Russian), Proc. International Congress Math. Moscow,
1966, Amer. Math. Soc. Transl. 86 (1970), 101-108.

A. G. VITu¥kiN AND G. M. HeNKIN, Linear superpositions of functions, Uspehi Mat.
Nauk. 22 (1967), 77-124,

A. Wiman, Uber die Anwendung der Tschirenhausen Transformation auf die Reduk-
tion Algebraischer Gleichungen, Nova Acta Soc. Sci. Uppsal. (1927), 3-8.



